Copied to
clipboard

G = C22×C4.Q8order 128 = 27

Direct product of C22 and C4.Q8

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C22×C4.Q8, C24.191D4, C23.48SD16, C89(C22×C4), (C22×C8)⋊18C4, C4.1(C22×Q8), (C23×C8).21C2, C4.45(C23×C4), C4⋊C4.346C23, C23.85(C4⋊C4), (C2×C4).183C24, (C2×C8).587C23, C23.838(C2×D4), (C22×C4).603D4, (C22×C4).101Q8, C2.3(C22×SD16), C22.80(C2×SD16), (C22×C8).564C22, (C23×C4).694C22, C22.130(C22×D4), (C22×C4).1504C23, (C2×C8)⋊38(C2×C4), C4.63(C2×C4⋊C4), (C2×C4).841(C2×D4), C2.22(C22×C4⋊C4), C22.74(C2×C4⋊C4), (C2×C4).237(C2×Q8), (C2×C4).149(C4⋊C4), (C22×C4⋊C4).42C2, (C2×C4⋊C4).901C22, (C22×C4).494(C2×C4), (C2×C4).571(C22×C4), SmallGroup(128,1639)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C22×C4.Q8
C1C2C22C2×C4C22×C4C23×C4C23×C8 — C22×C4.Q8
C1C2C4 — C22×C4.Q8
C1C24C23×C4 — C22×C4.Q8
C1C2C2C2×C4 — C22×C4.Q8

Generators and relations for C22×C4.Q8
 G = < a,b,c,d,e | a2=b2=c4=1, d4=c2, e2=c-1d2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d3 >

Subgroups: 460 in 300 conjugacy classes, 220 normal (10 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C24, C4.Q8, C2×C4⋊C4, C2×C4⋊C4, C22×C8, C23×C4, C23×C4, C2×C4.Q8, C22×C4⋊C4, C23×C8, C22×C4.Q8
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, SD16, C22×C4, C2×D4, C2×Q8, C24, C4.Q8, C2×C4⋊C4, C2×SD16, C23×C4, C22×D4, C22×Q8, C2×C4.Q8, C22×C4⋊C4, C22×SD16, C22×C4.Q8

Smallest permutation representation of C22×C4.Q8
Regular action on 128 points
Generators in S128
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 9)(8 10)(17 46)(18 47)(19 48)(20 41)(21 42)(22 43)(23 44)(24 45)(25 60)(26 61)(27 62)(28 63)(29 64)(30 57)(31 58)(32 59)(33 83)(34 84)(35 85)(36 86)(37 87)(38 88)(39 81)(40 82)(49 105)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)(65 128)(66 121)(67 122)(68 123)(69 124)(70 125)(71 126)(72 127)(73 95)(74 96)(75 89)(76 90)(77 91)(78 92)(79 93)(80 94)(97 120)(98 113)(99 114)(100 115)(101 116)(102 117)(103 118)(104 119)
(1 22)(2 23)(3 24)(4 17)(5 18)(6 19)(7 20)(8 21)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)(49 123)(50 124)(51 125)(52 126)(53 127)(54 128)(55 121)(56 122)(57 85)(58 86)(59 87)(60 88)(61 81)(62 82)(63 83)(64 84)(65 110)(66 111)(67 112)(68 105)(69 106)(70 107)(71 108)(72 109)(73 117)(74 118)(75 119)(76 120)(77 113)(78 114)(79 115)(80 116)(89 104)(90 97)(91 98)(92 99)(93 100)(94 101)(95 102)(96 103)
(1 57 5 61)(2 58 6 62)(3 59 7 63)(4 60 8 64)(9 28 13 32)(10 29 14 25)(11 30 15 26)(12 31 16 27)(17 88 21 84)(18 81 22 85)(19 82 23 86)(20 83 24 87)(33 45 37 41)(34 46 38 42)(35 47 39 43)(36 48 40 44)(49 98 53 102)(50 99 54 103)(51 100 55 104)(52 101 56 97)(65 74 69 78)(66 75 70 79)(67 76 71 80)(68 77 72 73)(89 125 93 121)(90 126 94 122)(91 127 95 123)(92 128 96 124)(105 113 109 117)(106 114 110 118)(107 115 111 119)(108 116 112 120)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)
(1 117 63 111)(2 120 64 106)(3 115 57 109)(4 118 58 112)(5 113 59 107)(6 116 60 110)(7 119 61 105)(8 114 62 108)(9 104 26 49)(10 99 27 52)(11 102 28 55)(12 97 29 50)(13 100 30 53)(14 103 31 56)(15 98 32 51)(16 101 25 54)(17 74 86 67)(18 77 87 70)(19 80 88 65)(20 75 81 68)(21 78 82 71)(22 73 83 66)(23 76 84 69)(24 79 85 72)(33 121 43 95)(34 124 44 90)(35 127 45 93)(36 122 46 96)(37 125 47 91)(38 128 48 94)(39 123 41 89)(40 126 42 92)

G:=sub<Sym(128)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,81)(40,82)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)(65,128)(66,121)(67,122)(68,123)(69,124)(70,125)(71,126)(72,127)(73,95)(74,96)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(97,120)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,121)(56,122)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(65,110)(66,111)(67,112)(68,105)(69,106)(70,107)(71,108)(72,109)(73,117)(74,118)(75,119)(76,120)(77,113)(78,114)(79,115)(80,116)(89,104)(90,97)(91,98)(92,99)(93,100)(94,101)(95,102)(96,103), (1,57,5,61)(2,58,6,62)(3,59,7,63)(4,60,8,64)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27)(17,88,21,84)(18,81,22,85)(19,82,23,86)(20,83,24,87)(33,45,37,41)(34,46,38,42)(35,47,39,43)(36,48,40,44)(49,98,53,102)(50,99,54,103)(51,100,55,104)(52,101,56,97)(65,74,69,78)(66,75,70,79)(67,76,71,80)(68,77,72,73)(89,125,93,121)(90,126,94,122)(91,127,95,123)(92,128,96,124)(105,113,109,117)(106,114,110,118)(107,115,111,119)(108,116,112,120), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,117,63,111)(2,120,64,106)(3,115,57,109)(4,118,58,112)(5,113,59,107)(6,116,60,110)(7,119,61,105)(8,114,62,108)(9,104,26,49)(10,99,27,52)(11,102,28,55)(12,97,29,50)(13,100,30,53)(14,103,31,56)(15,98,32,51)(16,101,25,54)(17,74,86,67)(18,77,87,70)(19,80,88,65)(20,75,81,68)(21,78,82,71)(22,73,83,66)(23,76,84,69)(24,79,85,72)(33,121,43,95)(34,124,44,90)(35,127,45,93)(36,122,46,96)(37,125,47,91)(38,128,48,94)(39,123,41,89)(40,126,42,92)>;

G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,9)(8,10)(17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,60)(26,61)(27,62)(28,63)(29,64)(30,57)(31,58)(32,59)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,81)(40,82)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112)(65,128)(66,121)(67,122)(68,123)(69,124)(70,125)(71,126)(72,127)(73,95)(74,96)(75,89)(76,90)(77,91)(78,92)(79,93)(80,94)(97,120)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119), (1,22)(2,23)(3,24)(4,17)(5,18)(6,19)(7,20)(8,21)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37)(49,123)(50,124)(51,125)(52,126)(53,127)(54,128)(55,121)(56,122)(57,85)(58,86)(59,87)(60,88)(61,81)(62,82)(63,83)(64,84)(65,110)(66,111)(67,112)(68,105)(69,106)(70,107)(71,108)(72,109)(73,117)(74,118)(75,119)(76,120)(77,113)(78,114)(79,115)(80,116)(89,104)(90,97)(91,98)(92,99)(93,100)(94,101)(95,102)(96,103), (1,57,5,61)(2,58,6,62)(3,59,7,63)(4,60,8,64)(9,28,13,32)(10,29,14,25)(11,30,15,26)(12,31,16,27)(17,88,21,84)(18,81,22,85)(19,82,23,86)(20,83,24,87)(33,45,37,41)(34,46,38,42)(35,47,39,43)(36,48,40,44)(49,98,53,102)(50,99,54,103)(51,100,55,104)(52,101,56,97)(65,74,69,78)(66,75,70,79)(67,76,71,80)(68,77,72,73)(89,125,93,121)(90,126,94,122)(91,127,95,123)(92,128,96,124)(105,113,109,117)(106,114,110,118)(107,115,111,119)(108,116,112,120), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128), (1,117,63,111)(2,120,64,106)(3,115,57,109)(4,118,58,112)(5,113,59,107)(6,116,60,110)(7,119,61,105)(8,114,62,108)(9,104,26,49)(10,99,27,52)(11,102,28,55)(12,97,29,50)(13,100,30,53)(14,103,31,56)(15,98,32,51)(16,101,25,54)(17,74,86,67)(18,77,87,70)(19,80,88,65)(20,75,81,68)(21,78,82,71)(22,73,83,66)(23,76,84,69)(24,79,85,72)(33,121,43,95)(34,124,44,90)(35,127,45,93)(36,122,46,96)(37,125,47,91)(38,128,48,94)(39,123,41,89)(40,126,42,92) );

G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,9),(8,10),(17,46),(18,47),(19,48),(20,41),(21,42),(22,43),(23,44),(24,45),(25,60),(26,61),(27,62),(28,63),(29,64),(30,57),(31,58),(32,59),(33,83),(34,84),(35,85),(36,86),(37,87),(38,88),(39,81),(40,82),(49,105),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112),(65,128),(66,121),(67,122),(68,123),(69,124),(70,125),(71,126),(72,127),(73,95),(74,96),(75,89),(76,90),(77,91),(78,92),(79,93),(80,94),(97,120),(98,113),(99,114),(100,115),(101,116),(102,117),(103,118),(104,119)], [(1,22),(2,23),(3,24),(4,17),(5,18),(6,19),(7,20),(8,21),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37),(49,123),(50,124),(51,125),(52,126),(53,127),(54,128),(55,121),(56,122),(57,85),(58,86),(59,87),(60,88),(61,81),(62,82),(63,83),(64,84),(65,110),(66,111),(67,112),(68,105),(69,106),(70,107),(71,108),(72,109),(73,117),(74,118),(75,119),(76,120),(77,113),(78,114),(79,115),(80,116),(89,104),(90,97),(91,98),(92,99),(93,100),(94,101),(95,102),(96,103)], [(1,57,5,61),(2,58,6,62),(3,59,7,63),(4,60,8,64),(9,28,13,32),(10,29,14,25),(11,30,15,26),(12,31,16,27),(17,88,21,84),(18,81,22,85),(19,82,23,86),(20,83,24,87),(33,45,37,41),(34,46,38,42),(35,47,39,43),(36,48,40,44),(49,98,53,102),(50,99,54,103),(51,100,55,104),(52,101,56,97),(65,74,69,78),(66,75,70,79),(67,76,71,80),(68,77,72,73),(89,125,93,121),(90,126,94,122),(91,127,95,123),(92,128,96,124),(105,113,109,117),(106,114,110,118),(107,115,111,119),(108,116,112,120)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128)], [(1,117,63,111),(2,120,64,106),(3,115,57,109),(4,118,58,112),(5,113,59,107),(6,116,60,110),(7,119,61,105),(8,114,62,108),(9,104,26,49),(10,99,27,52),(11,102,28,55),(12,97,29,50),(13,100,30,53),(14,103,31,56),(15,98,32,51),(16,101,25,54),(17,74,86,67),(18,77,87,70),(19,80,88,65),(20,75,81,68),(21,78,82,71),(22,73,83,66),(23,76,84,69),(24,79,85,72),(33,121,43,95),(34,124,44,90),(35,127,45,93),(36,122,46,96),(37,125,47,91),(38,128,48,94),(39,123,41,89),(40,126,42,92)]])

56 conjugacy classes

class 1 2A···2O4A···4H4I···4X8A···8P
order12···24···44···48···8
size11···12···24···42···2

56 irreducible representations

dim111112222
type+++++-+
imageC1C2C2C2C4D4Q8D4SD16
kernelC22×C4.Q8C2×C4.Q8C22×C4⋊C4C23×C8C22×C8C22×C4C22×C4C24C23
# reps112211634116

Matrix representation of C22×C4.Q8 in GL6(𝔽17)

1600000
010000
0016000
0001600
000010
000001
,
100000
0160000
0016000
0001600
000010
000001
,
100000
0160000
0016000
0001600
0000016
000010
,
1600000
0160000
000100
0016000
0000125
00001212
,
100000
0130000
006400
0041100
00001212
0000125

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,12,12,0,0,0,0,5,12],[1,0,0,0,0,0,0,13,0,0,0,0,0,0,6,4,0,0,0,0,4,11,0,0,0,0,0,0,12,12,0,0,0,0,12,5] >;

C22×C4.Q8 in GAP, Magma, Sage, TeX

C_2^2\times C_4.Q_8
% in TeX

G:=Group("C2^2xC4.Q8");
// GroupNames label

G:=SmallGroup(128,1639);
// by ID

G=gap.SmallGroup(128,1639);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,120,2804,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=1,d^4=c^2,e^2=c^-1*d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽